Incorporating Syntactic Uncertainty in Neural Machine Translation with Forest-to-Sequence Model

نویسندگان

  • Poorya ZareMoodi
  • Gholamreza Haffari
چکیده

Previous work on utilizing parse trees of source sentence in Attentional Neural Machine Translation was promising. However, current models suffer from a major drawback: they use only 1-best parse tree which may lead to translation mistakes due to parsing errors. In this paper we propose a forest-to-sequence Attentional Neural Machine Translation model which uses a forest instead of the 1-best tree. Our method utilizes phrase structure of source sentence given by exponentially many grammar trees (compacted in a packed forest) to compensate parsing errors. Experiments on English to Japanese, German and Persian dataset demonsterate superiority of our method over the treeto-sequence and vanilla Attentional Neural Machine Translation models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Isomorphic Forest Pair Translation

This paper studies two issues, non-isomorphic structure translation and target syntactic structure usage, for statistical machine translation in the context of forest-based tree to tree sequence translation. For the first issue, we propose a novel non-isomorphic translation framework to capture more non-isomorphic structure mappings than traditional tree-based and tree-sequence-based translatio...

متن کامل

A Comparative Study of English-Persian Translation of Neural Google Translation

Many studies abroad have focused on neural machine translation and almost all concluded that this method was much closer to humanistic translation than machine translation. Therefore, this paper aimed at investigating whether neural machine translation was more acceptable in English-Persian translation in comparison with machine translation. Hence, two types of text were chosen to be translated...

متن کامل

Improved Neural Machine Translation with a Syntax-Aware Encoder and Decoder

Most neural machine translation (NMT) models are based on the sequential encoder-decoder framework, which makes no use of syntactic information. In this paper, we improve this model by explicitly incorporating source-side syntactic trees. More specifically, we propose (1) a bidirectional tree encoder which learns both sequential and tree structured representations; (2) a tree-coverage model tha...

متن کامل

Sequence-to-Dependency Neural Machine Translation

Nowadays a typical Neural Machine Translation (NMT) model generates translations from left to right as a linear sequence, during which latent syntactic structures of the target sentences are not explicitly concerned. Inspired by the success of using syntactic knowledge of target language for improving statistical machine translation, in this paper we propose a novel Sequence-to-Dependency Neura...

متن کامل

مدل ترجمه عبارت-مرزی با استفاده از برچسب‌های کم‌عمق نحوی

Phrase-boundary model for statistical machine translation labels the rules with classes of boundary words on the target side phrases of training corpus. In this paper, we extend the phrase-boundary model using shallow syntactic labels including POS tags and chunk labels. With the priority of chunk labels, the proposed model names non-terminals with shallow syntactic labels on the boundaries of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.07019  شماره 

صفحات  -

تاریخ انتشار 2017